FLUORINATION OF SOLID UF_6 DECOMPOSITION PRODUCTS BY GASEOUS MIXTURES OF ${\rm CBrF_3}$ and ${\rm F_2}$

W. Bacher, E. W. Becker, W. Bier and A. Maner

Institut für Kernverfahrenstechnik des Kernforschungszentrums, Karlsruhe, Postfach 3640, 7500 Karlsruhe (F.R.G.)

E. Jacob

M.A.N. Neue Technologie, Postfach 500620, 8000 Munich 50 (F.R.G.)

Gaseous mixtures of CBrF_3 and F_2 exhibit some advantages in the removal of solid UF₆ decomposition products from uranium enrichment installations [1]. To facilitate optimal application we have studied the self decomposition of this mixture as well as its interaction with $\text{UO}_2\text{F}_2 \cdot \text{H}_2\text{O}$ within a stainless steel cell equipped with AgCl windows for IR analysis.

It has been found that in the self decomposition under low $\rm F_2$ content $\rm BrF_3$ shows up besides the common reaction products $\rm BrF_5$ and $\rm CF_4$. Within certain limits, the reaction rate for the fluorination of $\rm UO_2F_2\cdot H_2O$ increases with decreasing $\rm F_2$ content of the mixture.

The fluorination of $UO_2F_2 \cdot H_2O$ results in a retardation of the BrF₅ formation as compared to the formation of CF₄. This indicates a temporary accumulation of bromine in low valent states on the surface of the solid uranium compound.

For practical application of mixtures with low F_2 content it is important to know that after the total consumption of F_2 the residual CBrF₃ may attack the UF₆ formed by fluorination of the solid uranium compound. Therefore F_2 has to be added or the mixture has to be pumped off in time.

1 W. Bacher, W. Bier, E. Jacob, A. Maner, paper to the 10th Int. Symp. on Fluorine Chemistry, Vancouver (1982).